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Abstract

The BigCode project is an open-scientific collaboration working on the re-
sponsible development of large language models for code.1 This tech re-
port describes the progress of the collaboration until December 2022, out-

∗Corresponding authors (denoted by ‡) can be contacted at contact@bigcode-project.org
1See https://www.bigcode-project.org
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lining the current state of the Personally Identifiable Information (PII)
redaction pipeline, the experiments conducted to de-risk the model ar-
chitecture, and the experiments investigating better preprocessing meth-
ods for the training data. We train 1.1B parameter models on the Java,
JavaScript, and Python subsets of The Stack (Kocetkov et al., 2022) and
evaluate the models on MultiPL-E (Cassano et al., 2022), a text2code
benchmark available in 18 programming languages. We find that more
aggressive filtering of near-duplicates can further boost performance and,
surprisingly, that selecting files from repositories with 5+ GitHub stars
deteriorates performance significantly. Our best model outperforms pre-
vious open-source multilingual code generation models (InCoder-6.7B and
CodeGen-Multi-2.7B) in both left-to-right generation and infilling on the
Java, JavaScript, and Python portions of MultiPL-E, despite being a sub-
stantially smaller model. All models are released under an OpenRAIL
license at https://hf.co/bigcode.

1 Introduction

Over the last two years, we have witnessed tremendous progress in the development of code
generating AI assistants (Chen et al., 2021; Chowdhery et al., 2022; Nijkamp et al., 2022;
Fried et al., 2022; Li et al., 2022; Athiwaratkun et al., 2022). Machine learning models are
now capable of assisting professional developers through the synthesis of novel code snippets,
not only from surrounding code fragments, but also from natural language instructions. The
models powering these code completion systems are usually referred to as Large Language
Models for Code—or code LLMs—and are created by training large transformer neural
networks (Vaswani et al., 2017) on big corpora of source code. However, there is a lack of
transparency in the research community on the development of these models due to their
commercial value and the legal uncertainty around distributing training data and models.
Some groups have released model weights (Fried et al., 2022; Nijkamp et al., 2022) or
provided access to the model through a paid API service (Chen et al., 2021; Athiwaratkun
et al., 2022), but these papers did not release the full training data or the preprocessing
methods that were used.
BigCode is an open scientific collaboration working on the responsible development of large
language models for code, empowering the machine learning and open-source communities
through open governance. Various BigCode working groups focus on relevant subtopics such
as collecting datasets, implementing methods for training code LLMs, developing an eval-
uation suite, and discussing ethical best practices for these powerful models. For example,
the Legal, Ethics, and Governance working group has explored questions on data licensing,
attribution of generated code to original code, the redaction of Personally Identifiable In-
formation (PII), and the risks of outputting malicious code. In earlier work, the BigCode
community released The Stack v1.1 (Kocetkov et al., 2022), a 6.4 TB dataset of permis-
sively licensed source code in 384 programming languages. That work also introduced “Am
I in The Stack”,2 a governance tool for developers to check whether their source is part of
the dataset, and an opt-out form for those who wish to have their code removed from the
dataset.3

In this tech report, we summarize the learnings of the BigCode community in developing
the Santa models, a set of 1.1B-parameter models trained on the Java, JavaScript, and
Python subsets of The Stack and evaluated on MultiPL-E (Cassano et al., 2022). We
describe the first steps of the community towards developing larger code models and report
experiments to de-risk the model architecture and the data processing pipeline. Specifically,
the contributions of this report can be summarized as follows:

• We describe the current state of the PII redaction pipeline. We detail how we cre-
ate a PII benchmark of 400 code files, describe the filters for detecting emails, ip

2https://huggingface.co/spaces/bigcode/in-the-stack
3https://www.bigcode-project.org/docs/about/the-stack/
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addresses, and secret keys, and analyze its performance on the annotation bench-
mark. All experiments in this work are conducted on the PII-redacted version of
The Stack.

• We run ablations for Multi Query Attention (MQA) (Shazeer, 2019; Chowdhery
et al., 2022; Li et al., 2022) and Fill-in-the-Middle (FIM) (Fried et al., 2022; Bavarian
et al., 2022). MQA can significantly speed-up inference for larger batch sizes, while
FIM enables code models to do infilling tasks. We find that both changes only
slightly deteriorate downstream performance compared to baseline models.

• We investigate the impact of 4 preprocessing methods on the training data: filtering
files from repositories with 5+ GitHub stars, filtering files with a high comments-to-
code ratio, more aggressive filtering of near-duplicates, and filtering files with a low
character-to-token ratio. We observe modest impact of the new filters except for the
stars filter, which deteriorates performance on text2code benchmarks significantly.
This is an interesting result given that previous work has explicitly filtered for
GitHub Stars as a proxy for data quality (Gao et al., 2020).

• Using the findings from these experiments, we train a final 1.1B parameter model,
dubbed SantaCoder, on Python, JavaScript, and Java. This model obtains com-
parable or stronger performance than previous open-source multilingual models,
InCoder-6.7B and CodeGen-Multi-2.7B, on code generation and infilling tasks on
the MultiPL-E benchmark for these three languages, despite being substantially
smaller.

2 Related Work

Code LLMs Recently, there has been an increasing amount of research on using large-
scale transformer models to analyze or generate source code. Many studies have focused on
using decoder-only models with a causal language modeling objective (Chen et al., 2021;
Austin et al., 2021; Nijkamp et al., 2022; Christopoulou et al., 2022; Izadi et al., 2022; Xu
et al., 2022; Athiwaratkun et al., 2022), while other studies have investigated encoder (Feng
et al., 2020a; Kanade et al., 2020) and encoder-decoder architectures (Li et al., 2022; Ah-
mad et al., 2021; Wang et al., 2021; Roziere et al., 2021). Bavarian et al. (2022); Fried et al.
(2022) propose to use decoder-only models for code-infilling tasks using a causal masking
mechanism, and Bavarian et al. (2022) argues that training with such a fill-in-the middle
(FIM) objective does not harm the model’s ability to do left-to-right generation. Shazeer
(2019) proposes Multi Query Attention (MQA), an architectural change to the transformer
neural network in which key and value embeddings are shared across attention heads, re-
sulting in lower memory requirements and faster inference for large batch settings. Multi
Query Attention was implemented in AlphaCode (Li et al., 2022) and PaLM (Chowdhery
et al., 2022).

Evaluating text to code The correctness of generated code can be tested using unit
tests, a method for approximating semantic equivalence. Textual similarity metrics have
also been used to evaluate code (Feng et al., 2020b; Ren et al., 2020); however, they have
been shown to correlate only weakly with code correctness (Austin et al., 2021; Chen et al.,
2021).
Many single-language benchmarks for evaluating code completion exist (Kulal et al., 2019;
Iyer et al., 2018; Zhong et al., 2017; Yu et al., 2018; Austin et al., 2021; Hendrycks et al.,
2021; Chen et al., 2021; Austin et al., 2021; Athiwaratkun et al., 2022; Lai et al., 2022).
Two of the most popular benchmarks for Python are HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), which consist of a natural language description of a function
and a set of unit tests.
MultiPL-E (Cassano et al., 2022) extends two popular benchmarks for code completion,
MBPP and HumanEval, to 18 additional languages. The doctests, function signatures, and
unit tests for each benchmark suite are automatically compiled to new languages. Python-
specific terminology in the prompt is automatically replaced with the equivalent terminology
used for each programming language. MBXP (Athiwaratkun et al., 2022) is a concurrent
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benchmark that uses a similar approach, but differs in the details of type inference, prompt
construction, and evaluation. In particular, MBXP uses the same set of assertions in the
prompt that it uses to test the correctness of generated solutions. In contrast, MultiPL-E
keeps the tests hidden from the model and only uses them to test correctness.

Evaluating other tasks Code generation models have also been used to solve a variety
of tasks (Tufano et al., 2020; Feng et al., 2020b; Ahmed & Devanbu, 2022; Hellendoorn
et al., 2018; Pradel et al., 2020). CodeXGLUE (Lu et al., 2021) is a set of 14 datasets for
evaluating code generation models. The tasks include code-to-code tasks like clone detection,
code repair, and code translation; text-to-code tasks like code search and code generation;
and code-to-text tasks like generating documentation. The programming languages included
vary by task; the most common are Python and Java.

3 Opt-out process

Developers who do not wish their source code to be used for training code LLMs are given
the opportunity to opt-out of The Stack (Kocetkov et al., 2022). We received 9 opt-out
requests before the cut-off date for removing data (31 October 2022). These individuals
accounted for 299 repositories. Of these, 161 were already excluded from The Stack v1.0
(because they did not have a permissive license), and 138 were in The Stack v1.0. We
honored the requests to opt-out and removed these repositories from The Stack v1.1. After
the cut-off date (31 October 2022), we have received more requests for requests and we will
remove these repositories prior to releasing The Stack v1.2.

4 Redacting Personally Identifiable Information

We describe our first efforts to redact PII from The Stack.

4.1 PII benchmark

We construct a PII benchmark by annotating the following entities on a small subset of The
Stack: names, emails, usernames, passwords, IP addresses, API keys, and SSH keys. We
pre-filtered 400 samples from a total of 4000 code files that were likely to contain Personally
Identifiable Information (PII). We first select 4000 code files from 11 programming lan-
guages, with a total of 800 samples for Python and C++, 400 samples for Java, JavaScript,
TypeScript, and PHP, and 160 samples for C, C#, Markdown, Go, and Ruby. To detect
keys in these samples, we used the detect-secrets tool4 with all default plugins activated.
In addition, we used regular expressions to detect emails, IPv4 and IPv6 addresses, see Ap-
pendix C.1. Twelve members of the BigCode community annotated the files on the LightTag
platform,5 with one annotator assigned per file. After the annotation phase, one member
reviewed all the annotation tags. To further increase annotation quality, we ran our initial
PII detection tools on the annotated files and manually corrected any incorrect annotations
identified as false positives or false negatives.

4.2 PII detection and redaction

For the first iteration of the PII redaction pipeline, we focus on emails, IP addresses, and
keys, and leave the detection of names, usernames, and passwords for future work.

Emails We use a regular expression to detect emails, see Appendix C.1. We replace
detected emails with [random 5 character string]@example.com.

IP addresses We use regular expressions for IPv4 and IPv6 IP addresses, see Appendix
C.1. In addition, we check if the detected IP addresses have a valid format using the

4https://github.com/Yelp/detect-secrets
5https://www.lighttag.io/
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ipaddress python package. We also do not select IP addresses of the format a.b.c.d where
a, b, c and d are single digit numbers, except if the words “dns” or “server” appear in the
neighboring context (100 characters before or after). These detected addresses were mostly
false positives, consisting of package and release versions. Lastly, we do not anonymize
private IP addresses6 and popular DNS servers, as we don’t consider them sensitive infor-
mation. See Appendix C.2 for the full list.
We replace detected IP addresses with one of 5 randomly generated IP addresses.

Keys We employed the detect-secrets tool to identify secret keys in the code
files. To this end, we kept all the regex and entropy based plugins, including
the AWS key detector, the GitHub Token detector, the Azure storage key de-
tector, and the Base64 High Entropy String detector. You can find the full
list of plugins at https://github.com/bigcode-project/bigcode-dataset/blob/
6b3f54751b6e38e1ed70f2307331d6943ba39eae/pii/utils/keys_detection.py#L19.
We deactivated keyword detectors because they were detecting commonly used
words like ”password” rather than actual secret keys. To remove false pos-
itives, we activated filters like UUIDs and string-like secret filtering, see the
full list at https://github.com/bigcode-project/bigcode-dataset/blob/
6b3f54751b6e38e1ed70f2307331d6943ba39eae/pii/utils/keys_detection.py#L11.
We also observed that entropy detectors sometimes detected human-readable text like
paths and URLs as secrets, even when adjusting the entropy threshold. To address this
issue, we added a gibberish7 detector filter on top of detect-secrets to verify that the
detected string was actually gibberish. Additionally, we noticed that hashes were sometimes
falsely detected as secret keys. To mitigate this problem, we added a hash filter that verifies
the size of the detected string and checks for the presence of keywords like “sha”, “md5”,
“hash”, and “byte” in the neighboring context. Finally, to avoid corrupting any files, we
prevent the removal of keys from files where words like “sha” or “hash” are mentioned in
more than 2% of the number of lines.

4.3 Performance analysis

Evaluation on PII benchmark We evaluated our PII detection pipeline on the bench-
mark we annotated. The 400 files contained 214 emails, 99 IP addresses and 34 secret keys.
Figure 1 shows the precision and recall for each PII entity. Email and IP address detec-
tion perform well, with a precision and recall above 90% for emails and above 80% for IP
addresses. While key detection also achieves almost 80% precision, its recall is much lower
(slightly above 50%). We found that the key detection pipeline was especially sensitive to
the precision-recall trade-off, as including more plugins or disabling some filters detected
more keys but also increased the number of false positives.

PII detection on The Stack We run the PII pipeline on the Python, Java and JavaScript
subsets of The Stack v1.1 (Kocetkov et al., 2022). Table 1 shows some statistics on the
number of files containing PII and the total number of secrets found. Some files containing
PII are not modified if they contain only private IP addresses or popular DNS servers, as
explained in the previous section. The number of files containing PII is significantly lower for
JavaScript compared to Python and Java, but this could be due to the fact that JavaScript
files were filtered based on line length and percentage of alphanumeric characters before
running PII detection. We also observe that Python and JavaScript have a higher number
of secrets per file compared to Java.
To better understand these results, we computed the relevant percentiles in Table 2. We
can see that Java indeed has fewer secrets per file, and that almost 0.1% of the files contain
a large number of secrets (about 100). We found that some of these files contained multiple
instances of PII, such as emails stored in some form of database, or are files containing
long encodings and key-like strings that are split into multiple keys. Finally, we also plot
the distributions of detected secrets by entity type in Figure 2. For this graph, we filtered

6They are non-internet facing IP addresses used in internal networks
7https://github.com/domanchi/gibberish-detector
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Figure 1: Precision and recall of PII
detection tools.

Figure 2: Distribution of PII de-
tected in The Stack for Python, Java
and JavaScript.

Language # files # files with PII # secrets # modified files
Python 15,148,604 1,224,632 3,255,053 1,040,809
Java 25,124,914 1,588,453 2,757,169 1,506,766
JavaScript* 23,670,848 835,198 2,468,183 744,842

Table 1: Statistics from running PII detection on The Stack. JavaScript files initially went
through line-length filtering. Modified files are those altered during PII redaction.

out files with more than 100 secrets, but this did not change the distribution of PII across
languages. We observe that IP addresses are most often found in Python, keys in JavaScript
and emails in Java.

5 Experiments

5.1 Dataset, model, and training details

Dataset The base training dataset for the experiments in this paper contains 268 GB
of Python, Java and JavaScript files from The Stack v1.1 (Kocetkov et al., 2022) after
removing data from opt-out requests, near-deduplication, PII-redaction (see Section 4),
and filtering based on line-length and percentage of alphanumeric characters. This dataset
was also decontaminated by removing files that contained test-samples from the following
benchmarks: HumanEval (Chen et al., 2021), APPS (Hendrycks et al., 2021), MBPP (Austin
et al., 2021) and MultiPL-E (Cassano et al., 2022).

Tokenizer Seeing as the Santa models were the first models our community would train,
our design choices for the tokenizer were modulated by a conservative approach, partly based
on insights developed during the development of InCoder (Fried et al., 2022). We train a
Hugging Face Tokenizer (MOI et al., 2022) using the Byte-Pair Encoding (BPE) algorithm
on raw bytes with a vocabulary size of 49,152 tokens. This tokenizer was trained on 600,000
rows (Around 2.6 GB) of data—200,000 for each language—which were pre-tokenized using
a digit splitter and the default GPT-2 pre-tokenizer regex before being converted to bytes.

Training details Our base model is a 1.1B-parameter decoder-only transformer with FIM
and MQA trained in float16. It has 24 layers, 16 heads and a hidden-size of 2048. The
model is trained for 300K iterations with a global batch-size of 192 using Adam (Kingma
& Ba, 2015) with β1 = 0.9, β2 = 0.95, ε = 10−8 and a weight-decay of 0.1. A total of 118B
tokens are seen in training. The learning-rate is set to 2× 10−4 and follows a cosine decay
after warming up for 2% of the training steps. Each training run takes 3.1 days to complete
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Language mean median 95th percentile 99th percentile 99.9th percentile
Python 2.7 1 6 23 135
Java 1.7 1 3 11 63

JavaScript 3.3 1 7 30 197

Table 2: Statistics of the number of detected PII per file in The Stack.

Language Base Stars Comments-to-code Near-dedup Tokenizer fertility
Python 75.6 GB 26.6 GB 65.6 GB 62.0 GB 72.5 GB
Java 110 GB 35.8 GB 92.7 GB 88.4 GB 105.5 GB
JavaScript 82.7 GB 20.8 GB 57.5 GB 65.1 GB 76.4 GB

Table 3: Data volume after additional filtering of the Python, Java, JavaScript subsets of
The Stack.

on 96 Tesla V100 GPUs for a total of 1.05 × 1021 FLOPs. The final model described in
Section 6.2 uses twice the amount of compute.

5.2 Architecture ablations

We perform ablation experiments to de-risk the model architecture and training objective.
Specifically, we investigate Fill-in-the-Middle (Bavarian et al., 2022) and Multi Query At-
tention (MQA) (Shazeer, 2019).

FIM vs No-FIM Recent works (Fried et al., 2022; Bavarian et al., 2022) have shown that
autoregressive language-models can learn to infill code snippets by random transformation of
the training data. Bavarian et al. (2022) argue that such data transformations do not harm
the left-to-right generative capabilities of the model. Following Bavarian et al. (2022), we
implement FIM as a random transformation of the input sequence and split each training
document into three parts uniformly at random: prefix, middle and suffix. Each part is
prepended with a corresponding sentinel token, then documents are rearranged to put the
middle part at the end of the sequence. The autoregressive training objective is unchanged.
We use context-level FIM, apply transformations at the character level, use a FIM-rate of
0.5 and SPM+PSM joint training. We compare our base model to a model that was trained
with the standard left-to-right objective only (No-FIM).

Multi Query Attention vs Multi Head Attention Shazeer (2019) proposes Multi
Query Attention (MQA), an architectural change to transformer that shares key and value
embeddings across attention heads. Compared to Multi Head Attention (MHA), this lowers
the memory bandwidth requirements at generation time and results in faster inference. We
compare our base model to a similar model using MHA instead, with the same hyper-
parameters otherwise. Note that the MHA model has more parameters (1.3B) than the
base model in this setting.

5.3 Data filtering ablations

We experiment with a number of preprocessing methods applied to the base dataset, de-
scribed in Section 5.1. Note that the filters are applied on top of the other filters such as
near-deduplication, line length filtering, etc.

GitHub stars Do popular repositories contain good quality code? We use GitHub stars
as a proxy metric. We set the minimum threshold to 5 stars, as we believe that a lower
number of stars would not be an indicator of popularity. This filter removes more than 60%
of the data (in terms of volume), see Table 3. Note that more than 40% of the files do not
have stars and that setting the threshold to 10 stars would remove an additional 5% of the
data.

7
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Language Attention FIM HumanEval MBPP

Java
Multi Query Attention 3 0.35 0.54
Multi Head Attention 3 0.36 0.55
Multi Query Attention 7 0.37 0.55

JavaScript
Multi Query Attention 3 0.33 0.64
Multi Head Attention 3 0.37 0.67
Multi Query Attention 7 0.37 0.65

Python
Multi Query Attention 3 0.36 0.67
Multi Head Attention 3 0.38 0.70
Multi Query Attention 7 0.39 0.68

Table 4: Pass@100 results for the architecture ablations on HumanEval and MBPP.

Comment-to-code ratio Good code should be well documented. With this assumption,
we filter files with a high comments-to-code ratio. We use the ast and tokenize modules
to extract docstrings and comments from Python files, and Pygments to extract comments
from Java and JavaScript files. We then analyze the comment-to-code character ratio. We
find that about 20% of Python and Java files and 45% of JavaScript files have no comments.
We use a minimum threshold of 1%, removing an additional 3% of files in each language.
We also find that files with a ratio above 80% have poor quality, so we filter them out,
eliminating 2% of data in all languages. Overall, this comment-to-code filter removes 20%
of the data in terms of volume.

More near-deduplication Previous work (Kocetkov et al., 2022) has demonstrated the
effectiveness of deduplication in boosting the performance of code LLMs. Based on this
finding, we investigate whether more aggressive near-deduplication can further improve per-
formance. To this end, we conduct experiments on a 100K subset of the base dataset. In the
original deduplication pipeline, we implemented a false positive check on top of the MinHash
LSH8 output. This added processing time, but was necessary due to a high false positive
rate of around 15%. To remove more duplicates while maintaining a low false positive rate
and a low false negative rate, we switch to using 5-gram for min-hashing, and 0.7 for the
Jaccard Similarity threshold, without any additional false positive checks after the initial
near-deduplication. As a result, we see additionally 16%–20% fewer files than the original
already-deduplicated base dataset (see Table 3), and a decrease in both the estimated false
positive rate (from 15% to 5%) and the estimated false negative rate for documents with
high similarities (from 35% to 24%).

Tokenizer fertility Can we use the tokenizer to remove low-quality files from the dataset?
We experiment with filtering files with a low character-to-token ratio9. For each language, we
find that files with a ratio below the 5th percentile are usually of poor quality, but increasing
the threshold may eliminate some good-quality files. We therefore set the cutoff value for
this ratio to the following values: 2.5 for Python, 2.9 for Java, and 2.6 for JavaScript. This
filters out roughly 4% to 5% of data. Note that these values depend highly on the tokenizer
and the data. This filter may also be biased against files with non-English comments.

5.4 Evaluation

Text2code evaluation The text2code task involves generating the body of a function
from a prompt that includes a function description, the function signature (its name and
arguments), and optionally a handful of example inputs and outputs. Every problem is
accompanied by a set of hidden test cases, which are used to determine if the generated
function is correct. We use the MultiPL-E text2code benchmark Cassano et al. (2022),

8https://github.com/ekzhu/datasketch
9We slightly abuse the term tokenizer fertility in this work as it usually refers to the average num-

ber of subwords per token, where a token is determined by the true tokenizer of the programming
language. See e.g. (Rust et al., 2021)
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Model Java JavaScript Python
Baseline 0.64 0.61 0.42
GitHub stars 0.54 0.57 0.37
Comments-to-code 0.62 0.59 0.44
More near deduplication 0.66 0.57 0.45
Tokenizer fertility 0.67 0.65 0.45
Final 0.62 0.60 0.44

Table 5: Fill-in-the-middle results for the data filtering ablations on MultiPL-HumanEval.
Each number reports the fraction of lines where the model exactly reproduces a single line
of code that is held out from the body of a function in a held out problem.

Figure 3: HumanEval pass@100 performance throughout training for all models. Note that
evaluation shown here is based on OpenAI Python prompts and might differ (slightly) from
the MultiPL-E prompts used in the rest of this paper.

which is derived from HumanEval Chen et al. (2021) and MBPP Austin et al. (2021) (the
“sanitized” subset of MBPP.). Whereas the latter two benchmarks target Python, MultiPL-
E has a suite of compilers that translate HumanEval and MBPP to 18 other programming
languages. Since our models are only trained on Java, JavaScript, and Python, we only
evaluate them on these three languages.
We use the methodology of Chen et al. (2021) and we calculate pass@k rates for (k =
1, 10, 100) for every problem. Intuitively, pass@1 estimates the likelihood a model will
generate a correct solution in a single attempt, whereas pass@10 and pass@100 estimate
the likelihood that the model will generate a correct solution given 10 and 100 attempts
respectively. Following the literature, we sample 200 completions at temperatures 0.2 and
0.8 and use 0.2 to estimate pass@1 and 0.8 for pass@10 and pass@100.

Fill-in-the-middle evaluation To evaluate fill-in-the-middle, we use the single-line exact
match metric, which was introduced by Fried et al. (2022) and also employed by Bavarian
et al. (2022). For every benchmark problem, we mask out a single line of text from the
function body (i.e., not from the function description or signature), and prompt the model
to fill in that line of code. We exclude blank lines and comments, and count the number of
times the model produces exactly the masked out line. This benchmark requires working
solutions for problems, which MultiPL-E does not have. (A text2code benchmark like
MultiPL-E only needs hidden tests.) Instead, of writing solutions by hand, we use solutions
generated by a code generation model, which is the approach of Athiwaratkun et al. (2022).

9
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Multi−HumanEval Pass@100 Multi−MBPP Pass@100

Multi−HumanEval Pass@10 Multi−MBPP Pass@10
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Figure 4: Pass@k rates on Multi-HumanEval and Multi-MBPP by model and language

Specifically, we use working solutions produced by code-davinci-002 at temperature 0.8.
Note that this approach does not produce solutions to every problem, since not all problems
are solvable. Moreover, for uniformity, we use this approach for Python as well, even though
hand-written Python solutions exist for our benchmarks. We only report fill-in-the-middle
evaluations for the data filtering ablations.

6 Results

6.1 Ablations

For the architecture ablations, we report the results on text2code benchmarks in Table 4.
For the data filtering ablations, we show the text2code results in Figure 4 and report the
fill-in-the middle evaluations in Table 5. We show the HumanEval performance throughout
all training runs in Figure 3. You can find the full results tables of the text2code experiments
are Appendix A.

Slight drop in performance for MQA We see a small drop in performance for Multi
Query Attention (MQA) compared to Multi Head Attention (MHA). As shown in Table 4,
the MHA model improves pass@100 with 1-4% on HumanEval and with 1-3% on MBPP.
We specifically observe noticeable improvements for the JavaScript versions of the text2code
benchmarks. However, it should be noted that the MHA model has more parameters (1.3B)
than the MQA model (1.1B), and a head-to-head comparison might, therefore, not be
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Left-to-right pass@100 Fill-in-the-middle ex. match
Model Size Java JavaScript Python Java JavaScript Python
InCoder 6.7B 0.36 0.38 0.47 0.49 0.51 0.31
CodeGen-multi 2.7B 0.42 0.39 0.39 7 7 7
CodeGen-mono 2.7B 7 7 0.57 7 7 7
Codex10 2.5B 7 7 0.60 7 7 7

SantaCoder 1.1B 0.41 0.47 0.49 0.62 0.60 0.44

Table 6: Comparing the performance of the final version of SantaCoder with InCoder (Fried
et al., 2022), CodeGen (Nijkamp et al., 2022), and Codex (Chen et al., 2021) on left-to-
right (HumanEval pass@100) and fill-in-the-middle benchmarks (HumanEval line filling,
exact match).

entirely fair. We think that the inference speed-ups of MQA might outweigh the small drop
in performance.

FIM for cheap We observe a minor drop in performance of the FIM model compared to
the No-FIM model. Specifically, we see that the pass@100 performance of the FIM model is
2-4% lower on HumanEval and 1% lower on MBPP. While Bavarian et al. (2022) presented
evidence for the existence of a FIM-for-free property (i.e., arguing that autoregressive models
can be trained with FIM without harming left-to-right capabilities), we do find a small but
consistent drop of FIM models on left-to-right text2code benchmarks.

Modest impact of near-deduplication, comments, and fertility filter On
text2code benchmarks, we observe small gains for the near-deduplication and comment-
to-code filters and a neutral effect of the tokenizer filter. The near-deduplication filter
improves HumanEval performance by 1-3% and MBPP by 1-4% across the three program-
ming languages. The comment-to-code filter improves HumanEval performance by 0-2% but
decreases MBPP performance in certain cases (Java). See Appendix A for the full results
table. On fill-in-the-middle benchmarks, we see that the tokenizer fertility filter performs
well, improving performance by 2-4% across the three languages. The near-duplication and
comments filters have a mixed effect, improving fill-in-the-middle performance for Python
but deteriorating performance for JavaScript.

GitHub stars deteriorate performance Surprisingly, we find that the GitHub stars
filter performs poorly. On HumanEval and MBPP, the pass@100 performance consistently
drops by 3-6% across the three languages. On the fill-in-the-middle benchmark, the perfor-
mance drops by 5-11% (Table 5). Note that the stars filter removes the most data (over
60%) and, therefore, raises the question whether the performance difference is due to the
smaller dataset. However, as can be seen in Figure 3, HumanEval pass@100 diverged early
on in training, indicating that the drop in performance is not only due to data size but also
data quality.

6.2 Final model

Based on the insights from the architecture and dataset ablations, we train a final model,
which we call SantaCoder, with MQA and FIM and the two data filters that yielded the
best results: more near-deduplication and comments-to-code filter. We train this model for
600K iterations (236B tokens) and keep all other hyper-parameters the same.

Improved text2code performance Doubling the training iterations leads to much
stronger text2code performance on MultiPL-E, significantly boosting performance across
all benchmarks and programming languages (see Figure 4). Looking at the performance

10This is the performance of a Codex model reported by Chen et al. (2021). It is not clear if this
model is available via the OpenAI API.
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throughout training (Figure 3), it is likely that longer training can further increase perfor-
mance. Surprisingly, we find that the final training run did not improve the fill-in-the-middle
evaluations (see Table 5), at least on these single line infilling tasks.

Comparison to InCoder, CodeGen, and Codex Table 6 compares our SantaCoder
model to comparably-sized code generation models from previous work on the MultiPL-
E benchmark, using the methodology described in Section 5.4. We find that our model
generally outperforms previous open-source multi-language code generation models despite
being smaller, outperforming the InCoder 6.7B (Fried et al., 2022) model on both left-to-
right generation and single line fill-in-the-middle infilling across languages, and obtaining
comparable or stronger performance to CodeGen-multi 2.7B (Nijkamp et al., 2022).

7 Conclusion

We described the progress of the BigCode project until December 2022. The community
took its first steps towards redacting PII and demonstrated that regular expressions are
reasonably effective at detecting emails and IP addresses. Future work should focus on
increasing the precision and recall of secret keys, as well as detecting other sensitive infor-
mation such as names, usernames, and password. Using the PII-redacted version of The
Stack, we conducted a series of architectural and data filtering ablations. One of our main
findings was that filtering for Github stars consistently decreased performance across all
benchmarks and programming languages. Using the findings of these ablation studies, we
trained a final 1.1B model—dubbed SantaCoder—for 236B tokens and showed it is able to
outperform previous multi-lingual code models (InCoder-6.7B and CodeGen-Multi-2.7B) on
both left-to-right generation and infilling tasks. We anticipate that larger architectures and
more training data will be able to produce stronger multilingual, infilling-capable models,
and plan to continue to scale the findings from our investigations here.
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A Full text2code results

We report the full results of all experiments. Table 7 and 8 show the full results for the data
filtering ablations on HumanEval and MBPP, respectively. Table 9 and 10 reports the full
results for the architecture ablations on HumanEval and MBPP, respectively.

Language Model Pass@1 Pass@10 Pass@100

Java

Baseline 0.1 0.19 0.35
GitHub stars 0.08 0.16 0.3
Comments-to-code ratio 0.11 0.2 0.35
More near deduplication 0.13 0.22 0.38
Tokenizer fertility 0.11 0.19 0.35

JavaScript

Baseline 0.12 0.19 0.33
GitHub stars 0.08 0.15 0.3
Comments-to-code ratio 0.12 0.2 0.35
More near deduplication 0.14 0.2 0.37
Tokenizer fertility 0.1 0.19 0.35

Python

Baseline 0.12 0.21 0.36
GitHub stars 0.1 0.18 0.31
Comments-to-code ratio 0.14 0.22 0.38
More near deduplication 0.13 0.22 0.37
Tokenizer fertility 0.14 0.21 0.36

Table 7: Full results for data filtering ablations on HumanEval
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Language Model Pass@1 Pass@10 Pass@100

Java

Baseline 0.23 0.37 0.54
GitHub stars 0.18 0.33 0.49
Comments-to-code ratio 0.22 0.37 0.52
More near deduplication 0.23 0.38 0.55
Tokenizer fertility 0.22 0.38 0.53

JavaScript

Baseline 0.25 0.43 0.64
GitHub stars 0.19 0.37 0.59
Comments-to-code ratio 0.25 0.44 0.65
More near deduplication 0.26 0.45 0.66
Tokenizer fertility 0.24 0.43 0.65

Python

Baseline 0.27 0.47 0.67
GitHub stars 0.24 0.41 0.63
Comments-to-code ratio 0.3 0.48 0.69
More near deduplication 0.31 0.49 0.71
Tokenizer fertility 0.28 0.47 0.68

Table 8: Full results for data filtering ablations on HumanEval

Language Attention FIM Pass@1 Pass@10 Pass@100

Java
Multi Query Attention 3 0.1 0.19 0.35
Multi Head Attention 3 0.12 0.21 0.36
Multi Query Attention 7 0.11 0.21 0.37

JavaScript
Multi Query Attention 3 0.12 0.19 0.33
Multi Head Attention 3 0.13 0.21 0.37
Multi Query Attention 7 0.14 0.21 0.37

Python
Multi Query Attention 3 0.12 0.21 0.36
Multi Head Attention 3 0.13 0.24 0.38
Multi Query Attention 7 0.14 0.23 0.39

Table 9: Full results for architecture ablations on HumanEval
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Language Attention FIM Pass@1 Pass@10 Pass@100

Java
Multi Query Attention 3 0.23 0.37 0.54
Multi Head Attention 3 0.23 0.38 0.55
Multi Query Attention 7 0.23 0.37 0.55

JavaScript
Multi Query Attention 3 0.25 0.43 0.64
Multi Head Attention 3 0.26 0.46 0.67
Multi Query Attention 7 0.23 0.44 0.65

Python
Multi Query Attention 3 0.27 0.47 0.67
Multi Head Attention 3 0.31 0.49 0.7
Multi Query Attention 7 0.28 0.47 0.68

Table 10: Full results for architecture ablations on HumanEval

Model Family Variant BLEU
InCoder 6.7B 16.04
CodeGen-Mono 16B 20.56
SantaCoder Baseline 17.67
SantaCoder No-FIM 17.71
SantaCoder MHA 17.72
SantaCoder Bf16 17.67
SantaCoder GitHub Stars 18.04
SantaCoder Comments-to-code 17.81
SantaCoder More near deduplication 17.65
SantaCoder Tokenizer fertility 17.64
SantaCoder Final 18.13

Table 11: CodeXGLUE (Lu et al., 2021) Python Docstring generation smoothed 4-gram
BLEU scores using the same methodology as Fried et al. (2022) (L-R single). Models are
evaluated zero-shot, greedily and with a maximum generation length of 128.

B Docstring generation

In addition to code completion benchmarks, we also report results on docstring generation.
To this end, we evaluate our models on CodeXGLUE code-to-text Lu et al. (2021), which
is a benchmark constructed from CodeSearchNet Husain et al. (2019). We use the bigcode-
evaluation-harness library Ben Allal et al. (2022), which is derived from lm-evaluation-
harness Gao et al. (2021). Models are prompted with a Python function signature and
asked to output a corresponding docstring. Results are shown in Table 11.

Findings We find all BigCode Santa variants with 1.1B parameters to outperform the
6.7B InCoder model (Fried et al., 2022), which we attribute to differences in the training
datasets. Among BigCode models, variants trained on more Python perform better: The
stars variant with 32% of Python in its training corpus outperforms the tokenizer fertility
variant with only 28.5% of Python (see proportions in Table 3). The bfloat16 is the same
as the no-fim variant, except for the latter being trained in float16. There’s no notable
performance difference between the two, likely because at our small scale of 1.1B parameters
we did not face any training instabilites.

Qualitative examples Below is an example prompt from CodeXGLUE. Model genera-
tions and the correct solution are in Table 12.

def dailymotion_download(url, output_dir='.', merge=True, info_only=False,
**kwargs):
"""
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Model Family Variant Generation
InCoder 6.7B Download a video from Dailymotion.
CodeGen-Mono 16B Downloads Dailymotion videos by URL.
SantaCoder Baseline Download Dailymotion videos.
SantaCoder FIM Download a video from a dailymotion video.
SantaCoder MHA Download a video from a Dailymotion video.
SantaCoder bf16 Download video from dailymotion.com.
SantaCoder GitHub stars Download media from dailymotion.com
SantaCoder Comments-to-code Download a video from Dailymotion.
SantaCoder More near deduplication Download a dailymotion video.
SantaCoder Tokenizer fertility Download a video from Dailymotion.
Correct solution Downloads Dailymotion videos by URL.

Table 12: CodeXGLUE (Lu et al., 2021) Python Docstring generation examples.
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C PII

C.1 Regular expressions

Email addresses We used the following regular expression to detect emails.

email_pattern = r'''
(?<= ^ | [\b\s@,?!;:)('".\p{Han}<] )
(
[^\b\s@?!;,:)('"<]+
@
[^\b\s@!?;,/]*
[^\b\s@?!;,/:)('">.]
\.
\p{L} \w{1,}

)
(?= $ | [\b\s@,?!;:)('".\p{Han}>] )

'''

We replace detected emails with [random 5 character string]@example.com.

IP addresses We used the following regular expressions to detect IPv4 and IPv6 ad-
dresses.

ipv4_pattern = r"(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
(?:\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}"

ipv6_pattern = r"(?:[0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|(?:[0-9a-fA-F
]{1,4}:){1,7}:|(?:[0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|(?:[0-9a-fA-
F]{1,4}:){1,5}(?::[0-9a-fA-F]{1,4}){1,2}|(?:[0-9a-fA-F]{1,4}:)
{1,4}(?::[0-9a-fA-F]{1,4}){1,3}|(?:[0-9a-fA-F]{1,4}:){1,3}(?::[0-9a-fA-
F]{1,4}){1,4}|(?:[0-9a-fA-F]{1,4}:){1,2}(?::[0-9a-fA-F]{1,4}){1,5}|[0-9
a-fA-F]{1,4}:(?:(?::[0-9a-fA-F]{1,4}){1,6})|:(?:(?::[0-9a-fA-F]{1,4})
{1,7}|:)|fe80:(?::[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(?:ffff
(?::0{1,4}){0,1}:){0,1}(?:(?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])
\.){3,3}(?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])|(?:[0-9a-fA-F
]{1,4}:){1,4}:(?:(?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.)
{3,3}(25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])"

ip_pattern = (
r"(?:^|[\b\s@?,!;:\'\")(.\p{Han}])("
+ r"|".join([ipv4_pattern, ipv6_pattern])
+ ")(?:$|[\s@,?!;:'\"(.\p{Han}])"

)

Data pre-filtering This is the regular expression we used to pre-filter the annotation
dataset for data containing emails.

email_pattern = r'([^\s@,?!;:\'\"=)(]+@[^,\s!?;,\'\"=]{3,}[\.][^\s\b\'\"@
,?!;:)(.]+)'

For IP addresses, we used the same regular expression as the one used for PII detection.

C.2 List of private IP addresses and popular DNS servers

• 8.8.8.8
• 8.8.4.4
• 1.1.1.1
• 1.0.0.1
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• 76.76.19.19
• 76.223.122.150
• 9.9.9.9
• 149.112.112.112
• 208.67.222.222
• 208.67.220.220
• 8.26.56.26
• 8.20.247.20
• 94.140.14.14
• 94.140.15.15
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